PERIODS AND SYSTEM-
VERSIONED TABLES

rrrrrrrrrrrrrr
SSSSSSSSSSSSSSSSSSSS

VIK FEARING

2ndQuadrant-
PostgreSQL

https://www.2ndQuadrant.fr/

https://www.2ndquadrant.fr/

PERIODS

WHAT IS A PERIOD?

Wait.

Please do not interrupt me to talk about range types.

WHAT IS A PERIOD?

SQL:2011

A starting va

An ending va

ue: not nu

ue: not nu

|, inclusive

|, exclusive

A constraint: start < end

Same namespace as columns

SCHEDULING

CREATE TABLE reservations (
guest text NOT NULL,
room_number integer NOT NULL,
checkin date NOT NULL,
checkout date NOT NULL,

PERIOD FOR stay (checkin, checkout)

ALTER TABLE reservations
ADD PRIMARY KEY (room_number, stay WITHOUT OVERLAPS);

SCHEDULING

Guest Room Check In Check Out
Alice 112 2018-10-08 2018-10-11

INSERT INTO reservations

VALUES ('Bob', 112, '2018-10-10', '2018-10-12"),

ERROR

PERIOD PREDICATES

PERIOD PREDICATES

OVERLAPS pl1 OVERLAPS p2

EQUALS

01 EQUALS p2

CONTAINS

h1 CONTAINS p2

01 CONTAINS value

PERIOD PREDICATES

PRECEDES 01 PRECEDES p2
SUCCEEDS 01 SUCCEEDS p2
IMMEDIATELY 01 IMMEDIATELY
PRECEDES PRECEDES p2
IMMEDIATELY pl IMMEDIATELY
SUCCEEDS SUCCEEDS p2

SALES TAX RATES

CREATE TABLE vat (
start_date date NOT NULL,
end_date date NOT NULL,
rate percentage NOT NULL,

PERIOD FOR validity (start_date, end_date),
PRIMARY KEY (validity WITHOUT OVERLAPS)

SALES TAX RATES

for Switzerland

Start End Rate
-infinity 2011 7.6%
2011 2018 8%

2018 infinity 7.7%

SELECT *

JOIN vat ON vat.validity CONTAINS invoices.invoice_date;

NON-TEMPORAL
PERIODS

PRICING STRATEGIES

CREATE TABLE pricing (
product_name text NOT NULL,
unit_price numeric NOT NULL,
min_quantity 1integer NOT NULL,
max_quantity integer NOT NULL,

PERIOD FOR quantity_range (min_quantity, max_quantity),
CHECK (min_quantity > 0),
PRIMARY KEY (product_name, quantity_range WITHOUT OVERLAPS)

PRICING STRATEGIES

Product UnitPrice Min Max
Trinket €1000 1 10

Trinket €800 10 500
Trinket €600 500 1000
Trinket €250 1000 10000

SELECT * FROM pricing WHERE quantity_range CONTAINS 42;

PORTIONS

CREATE TABLE vacation (

employee text NOT NULL,
start_date date NOT NULL,
end_date date NOT NULL,

PERIOD FOR dates (start_date, end_date),
PRIMARY KEY (employee, dates WITHOUT OVERLAPS)

DELETE

Employee Start End
Charlotte 2018-08-01 2018-09-01

DELETE FROM vacation
FOR PORTION OF dates FROM '2018-08-10" TO '2018-08-11"

WHERE employee = 'Charlotte';

Employee Start End
Charlotte 2018-08-01 2018-08-10
Charlotte 2018-08-11 2018-09-01

CREATE TABLE products (

name text NOT NULL,
opening date NOT NULL,
closing date NOT NULL,
price numeric NOT NULL,

PERIOD FOR season (opening, closing),
PRIMARY KEY (name, season WITHOUT OVERLAPS)

UPDATE

Product Open Close Price

Trinket 2018-01-01 2019-01-01 €894.85

UPDATE products
FOR PORTION OF season FROM '2018-12-01' TO '2018-12-23'

SET price = 100;

UPDATE

Product Open Close Price

Trinket 2018-01-01 2018-12-01 €894.85

Trinket 2018-12-01 2019-12-23 €100.00

Trinket 2018-12-23 2019-01-01 €894.85

SYSTEM-VERSIONED
TABLES

(m e)

SYSTEM-VERSIONED TABLES

CREATE TABLE clients (
id bigint PRIMARY KEY,
name text NOT NULL,
email text NOT NULL,

sys_start timestamptz,
sys_end timestamptz,
PERIOD FOR SYSTEM_TIME (sys_start, sys_end)

SYSTEM-VERSIONED TABLES

CREATE TABLE clients (
id bigint PRIMARY KEY,
name text NOT NULL,
email text NOT NULL,

sys_start timestamptz GENERATED ALWAYS AS ROW START,
sys_end timestamptz GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM_TIME (sys_start, sys_end)

NOTHING CHANGES!

SYSTEM-VERSIONED TABLES

SELECT * FROM clients;

ID Client Email SysStart SysEnd

3784 GadgetsInc. alice@gadgets.com 2018-10-01 'infinity’
09:53+02

SYSTEM-VERSIONED TABLES

UPDATE clients SET email = 'bob@gadgets.com' WHERE id = 3784;

SELECT * FROM clients;

ID Client Email SysStart SysEnd

3784 GadgetsInc. bob@gadgets.com 2018-10-09 'infinity’
15:47+02

SYSTEM-VERSIONED TABLES

UPDATE clients SET email = 'carla@gadgets.com' WHERE id = 3784;

SELECT * FROM clients;

ID Client Email SysStart SysEnd

3784 GadgetsInc. carla@gadgets.com 2018-10-11 'infinity’
12:04+02

SYSTEM-VERSIONED TABLES

SELECT *

FROM clients FOR SYSTEM_TIME FROM

'-infinity' TO 'infinity';

ID Client Email SysStart SysEnd
3784 GadgetsInc. alice@gadgets.com 2018-10-01 2018-10-09
09:53+02 15:47+02
3784 GadgetsiInc. bob@gadgets.com 2018-10-09 2018-10-11
15:47+02 12:04+02
3784 GadgetsInc. carla@gadgets.com 2018-10-11 'infinity'

12:04+02

SYSTEM-VERSIONED TABLES

SELECT *

FROM clients FOR SYSTEM_TIME AS OF '2018-10-07 12:00+02';

ID Client Email SysStart SysEnd

3784 GadgetsInc. alice@gadgets.com 2018-10-01 2018-10-09
09:53+02 15:47+02

SYSTEM-VERSIONED TABLES

e ASOF ts

e FROMts1 TO ts2

e BETWEEN ts1 AND ts2

e BETWEEN SYMMETRIC ts1 AND ts2

IMPLEMENTATION IN
POSTGRESOL

WHAT IS A PERIOD?

A starting va

An ending va

ue: not nu

ue: not nu

|, inclusive

|, exc

A constraint; start < enc

usive

Same namespace as columns

WHAT IS A RANGE TYPE?

A starting va

An ending va

ue

ue

A constraint: start <=end

BUT!

Bounds can be either inclusive or exclusive

Bounds can be null

Ranges can be empty

SCHEDULING

CREATE TABLE reservations (
guest text NOT NULL,
room_number integer NOT NULL,
checkin date NOT NULL,
checkout date NOT NULL,

PERIOD FOR stay (checkin, checkout)

ALTER TABLE reservations
ADD PRIMARY KEY (room_number, stay WITHOUT OVERLAPS);

SCHEDULING

CREATE TABLE reservations (
guest text NOT NULL,

room_number integer NOT NULL,
stay daterange NOT NULL

i

ALTER TABLE reservations ADD PRIMARY KEY (room_number, stay);

CREATE EXTENSION btree_gist;

ALTER TABLE reservations
ADD EXCLUDE USING gist (room_number WITH =, stay WITH &&);

SCHEDULING

Guest Room Check In Check Out
Alice 112 2018-10-08 2018-10-11

INSERT INTO reservations

VALUES ('Bob', 112, '2018-10-10', '2018-10-12"),

ERROR

SCHEDULING

Guest Room Stay

Alice 112 [2018-10-08,2018-10-11)

INSERT INTO reserva ti

VALUES ('Bob', 112, '[2018-10-10,2018-10-12)"'),

ERROR

PERIOD PREDICATES

OVERLAPS p1 OVERLAPS p2 01 && p2
EQUALS 01 EQUALS p2 0l =p2
CONTAINS p1 CONTAINS p2 0l @> p2

01 CONTAINS value

01 @> value

PERIOD PREDICATES

PRECEDES p1PRECEDESp2 pl<<p2
SUCCEEDS pl1SUCCEEDSp2 p1l>>p2

PERIOD PREDICATES

IMMEDIATELY p1 IMMEDIATELY pl<<p2
PRECEDES PRECEDES p2 and
pl-|-p2
IMMEDIATELY p1 IMMEDIATELY pl>>p2
SUCCEEDS SUCCEEDS p2 and
pl-|-p2

Two new operators, <| and |>, would be useful outside
of this.

PRICING STRATEGIES

CREATE TABLE pricing (
product_name text NOT NULL,
unit_price numeric NOT NULL,
min_quantity integer NOT NULL,
max_quantity integer NOT NULL,

PERIOD FOR quantity_range (min_quantity, max_quantity),
CHECK (min_quantity > 0),
PRIMARY KEY (product_name, quantity_range WITHOUT OVERLAPS)

PRICING STRATEGIES

CREATE TABLE pricing (
product_name text NOT NULL,
unit_price numeric NOT NULL,
quantity_range int4range NOT NULL,

CHECK (lower(quantity_range) > 0),

PRIMARY KEY (product_name, quantity_range),

EXCLUDE USING gist (product_name WITH =,
quantity_range WITH &&)

PRICING STRATEGIES

Product UnitPrice Min Max
Trinket €1000 1 10

Trinket €800 10 500
Trinket €600 500 1000
Trinket €250 1000 10000

SELECT * FROM pricing WHERE quantity_range CONTAINS 42,

PRICING STRATEGIES

Product UnitPrice Quantities
Trinket €1000 1,10)

Trinket €800 10,500)
Trinket €600 500,1000)
Trinket €250 11000,10000)

SELECT * FROM pricing WHERE quantity_range @> 42;

NON-TEMPORAL
PERIODS

(not in the SQL standard)

(range types aren't either so "\ (V) /")

SALES TAX RATES

Start End Rate
-infinity 2011 7.6%
2011 2018 8%

2018 infinity 7.7%

SELECT *

JOIN vat ON vat.validity CONTAINS invoices.invoice_date;

SALES TAX RATES

Validity Rate
-infinity,2011) 7.6%
2011,2018) 8%

[2018,infinity) 7.7%

SELECT *

JOIN vat ON vat.validity @> invoilces.linvolce_date;

This can't be done with an extension.

DELETE FROM vacation
FOR PORTION OF dates FROM '2018-08-10' TO '2018-08-11'
WHERE employee = 'Charlotte';

UPDATE products
FOR PORTION OF season FROM '2018-12-01' TO '2018-12-23'
SET price = 100;

SYSTEM-VERSIONED
TABLES

https://github.com/xocolatl/sysver

https://github.com/xocolatl/sysver

SYSTEM-VERSIONED TABLES

CREATE TABLE clients (
id bigint PRIMARY KEY,
name text NOT NULL,
email text NOT NULL,

),

SYSTEM VERSIUNED TABLES

SELECT sysv

e Two columns: sysver_start and sysver_end
e NOT NULL constraints
e CHECK (sysver_start < sysver_end)

e BEFORE trigger for GENERATED ALWAYS
e AFTER trigger for historization

SYSTEM VERSIUNED TABLES

SELECT sysv

. Cllents_hlstory table, same structure
e clients with history view to combine them
e Several functions

SYSTEM-VERSIONED TABLES

SELECT * FROM clients;

ID Client Email SysStart SysEnd

3784 GadgetsInc. carla@gadgets.com 2018-10-11 'Infinity’
12:04+02

SYSTEM-VERSIONED TABLES

SELECT *
FROM clients FOR SYSTEM_TIME FROM '-infinity' TO 'infinity';

SELECT *
FROM clients_ from_to('-infinity', 'infinity');

ID Client Email SysStart SysEnd

3784 GadgetsInc. alice@gadgets.com 2018-10-01 2018-10-09
09:53+02 15:47+02

3784 GadgetsiInc. bob@gadgets.com 2018-10-09 2018-10-11
15:47+02 12:04+02

3784 GadgetsInc. carla@gadgets.com 2018-10-11 'infinity'
12:04+02

SYSTEM-VERSIONED TABLES

SELECT *

FROM clients__as_of('2018-10-07 12:00+02");

ID Client Email SysStart SysEnd

3784 GadgetsInc. alice@gadgets.com 2018-10-01 2018-10-09
09:53+02 15:47+02

SYSTEM-VERSIONED TABLES

AS OF ts table_as of(ts)

FROMts1 TO ts2 table_ from_to(ts1, ts2)

BETWEEN ts1 AND ts2 table_ between(ts1, ts2)

BETWEEN SYMMETRIC ts1 table__between_symmetric(tsl, ts2)

AND ts2

BETWEEN SYMMETRIC

commit 6f19a8c41f976236310a272bb646d3411759e18d
Author: Tom Lane

Date: Sun Dec 30 13:42:04 2018 -0500

Teach eval const expressions to constant-fold LEAST/GREATEST expressions.

Doing this requires an assumption that the invoked btree comparison
function is immutable. We could check that explicitly, but in other
places such as contain mutable functions we just assume that it's true,
so we may as well do likewise here. (If the comparison function's
behavior isn't immutable, the sort order in indexes built with it would
be unstable, so it seems certainly wrong for it not to be so.)

Vik Fearing

IMPLEMENTATION IN
POSTGRESOL

IMPLEMENTATION IN POSTGRES(L

WIP Patch posted to -hackers on May 26, 2018
Almost complete infrastructure for periods
Incomplete support for table inheritance
Incomplete support for pg_dump

None of the other features mentioned in this
presentation

(UESTIONS?

